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Abstract: Foundational and theoretical aspects of algebraic coding theory are
discussed with the concentration in the classes of cyclic and negacyclic codes over
finite chain rings. The significant role of finite rings as alphabets in coding theory
is presented. We surveys results on both simple-root and repeated-root cases of
such codes. Many directions in which the notions of cyclicity and negacyclicity
have been generalized are also considered. The paper is devoted to giving an
introduction to this area of applied algebra. We do not intend to be encyclopedic,
the topics included are bounded to reflect our own research interest.

1 What is Coding Theory?

The existence of noise in communication channels is an unavoidable fact of life. A
response to this problem has been the creation of error-correcting codes. Coding Theory is
the study of the properties of codes and their properties for a specific application. Codes are
used for data compression, cryptography, error-correction, and more recently for network
coding. In 1948, Claude Shannon’s1 landmark paper [114] on the mathematical theory
of communication, which showed that good codes exist, marked the beginning of both
Information Theory and Coding Theory.

The common feature of communication channels is that the original information is
sent across a noisy channel to a receiver at the other end. The channel is "noisy" in the
sense that the received message is not always the same as what was sent. The fundamental
problem is to detect if there is an error, and in such case, to determine what message was
sent based on the approximation that was received. An example that motivated the study
of coding theory is telephone transmission. It is impossible to avoid errors that occur as

1) Email: hdinh@kent.edu
1Claude Elwood Shannon (April 30, 1916 - February 24, 2001) was an American mathematician, electronic

engineer, and cryptographer, who is refered to as "the father of information theory" [76]. Shannon is also

credited as the founder of both digital computer and digital circuit design theory, when, in 1937, as a

21-year-old master’s student at MIT, he wrote a thesis establishing that electrical application of Boolean

algebra could construct and resolve any logical, numerical relationship. It has been claimed that this was the

most important master’s thesis of all time. Shannon contributed to the field of cryptanalysis during World

War II and afterwards, including basic work on code breaking.
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messages pass through long telephone lines and are corrupted by things such as lightening
and crosstalk. The transmission and reception capabilities of many modems are increased
by error handling capability in hardware. Another area in which coding theory has been
applied successfully is deep space communication. The meassge sourse is the satellite, the
channel is the out space and hardware that sends and receives date, the receiver is the
ground station on earth, and the noise are outside problems such as atmospheric conditions
and thermal disturbance. Data from space missions has been coded for transmission, since
it is normally impractical to retransmit. It is also important to protect communication
across time from inaccuracies. Data stored in computer banks or on tapes is subject to
the intrusion of gamma rays and magnetic interference. Personal computers are exposed to
much battering, their hard disks are often equipped with an error correcting code called
"cyclic redundancy check" (CRC)2 designed to detect accidental changes to raw computer
data. Leading computer companies like IBM an Dell have devoted much energy and time to
the study and implementation of error correcting techniques for data storage. Electronics
firms too need correction techniques. When Phillips introduced compact disc technology,
they wanted the information stored on the disc face to be immune to many types of damage.
In this case, the mesage is the voice, music, or data to be stored in the disc, the channel is
the disc itself, the receiver is the listener, and the noise here can be caused by fingerprints
or scratches on the disc. Recently the sound tracks of movies, prone to film breakage and
scratching, have been digitized and protected with error correction techniques.

The study of codes has grown into an important subject that intersects various scientific
disciplines, such as information theory, electrical engineering, mathematics, and computer
science, for the purpose of designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the detection and correction of errors in
the transmitted data. There are essentially two aspects to coding theory, namely, source
coding (i.e, data compression) and channel coding (i.e, error correction). These two aspects
may be studied in combination.

Source coding attempts to compress the data from a source in order to transmit it
more efficiently. This process can be found every day on the internet where the common

2A cyclic redundancy check (CRC) is an error-detecting code designed to detect accidental changes to

raw computer data, and is commonly used in digidelltal networks and storage devices such as hard disk

drives. The CRC was first introduced by Peterson and Brown in 1961 [105], the 32-bit polynomial used

in the CRC function of Ethernet and many other standards is the work of several researchers and was

published in 1975. Blocks of data entering these systems get a short check value attached, derived from the

remainder of a polynomial division of their contents; on retrieval the calculation is repeated, and corrective

action can be taken against presumed data corruption if the check values do not match. CRCs are so called

because the check (data verification) value is a redundancy (it adds zero information to the message) and

the algorithm is based on cyclic codes. CRCs are popular because they are simple to implement in binary

hardware, are easy to analyze mathematically, and are particularly good at detecting common errors caused

by noise in transmission channels. Because the check value has a fixed length, the function that generates

it is occasionally used as a hash function.
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Zip data compression is used to reduce the network bandwidth and make files smaller. The
second aspect, channel coding, adds extra data bits to make the transmission of data more
robust to disturbances present on the transmission channel. The ordinary users usually are
not aware of many applications using channel coding. A typical music CD uses the Reed-
Solomon code to correct damages caused by scratches and dust. In this application the
transmission channel is the CD itself. Cellular phones also use coding techniques to correct
for the fading and noise of high frequency radio transmission. Data modems, telephone
transmissions, and NASA all employ channel coding techniques to get the bits through, for
example the turbo code and LDPC codes.

Algebraic coding theory studies the subfield of coding theory where the properties of
codes are expressed in algebraic terms. Algebraic coding theory is basically divided into
two major types of codes, namely block codes and convolutional codes. It analyzes the
following three important properties of a code: code length, total number of codewords,
and the minimum distance between two codewords, using mainly the Hamming3 distance,
sometimes also other distances such as the Lee distance, Euclidean distance.

Given an alphabet A with q symbols, a block code C of length n over the alphabet A
is simply a subset of An. The q-ary n-tuples from C are called the codewords of the code
C. One normally envisions K, the number of codewords in C, as a power of q, i.e., K = qk,
thus replacing the parameter K with the dimension k = logqK. This dimension k is the
smallest integer such that each message for C can be assigned its own individual message
k-tuple from the q-ary alphabet A. Thus, the dimension k can be considered as the number
of codeword symbols that are carrying message rather than redundancy. Hence, the number
n− k is sometimes called the redundancy of the code C. The error correction performance
of a block code is described by the minimum Hamming distance d between each pair of
code words, and is normally referred as the distance of the code.

In a block code, each input message has a fixed length of k < n input symbols. The
redundancy added to a message by transforming it into a larger codeword enables a re-
ceiver to detect and correct errors in a transmitted code word, and to recover the original
message by using a suitable decoding algorithm. The redundancy is described in terms of
its information rate, or more simply, for a block code, in terms of its code rate, k/n.

At the receiver end, a decision is made about the codeword transmitted based on the
information in the received n-tuple. This decision is statistical, that is, it is a best guess
on the basis of available information. A good code is one where k/n, the rate of the code,
is as close to one as possible (so that, without too much redundancy, information may
be transmited efficiently) while the codewords are far enough from one another that the
probability of an incorrect interpretation of the received message is very small. The following

3The Hamming distance is named after Richard Hamming, who first introduced it in his fundamental

paper on Hamming codes in 1950 [70]. It is used in telecommunication to count the number of flipped bits

in a fixed-length binary word as an estimate of error, and hence it is sometimes refered to as the signal

distance.
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diagram describes a communication channel that includes an encoding/decoding scheme:

Message
original−−−−−→
message

Encoder
codeword−−−−−−→ Channel

received−−−−−−→
codeword

Decoder
estimated−−−−−−→
message

User

.
xNoise

Shannon’s theorem ensures that our hopes of getting the correct messages to the users
will be fulfilled a certain percentage of the time. Based on the characteristics of the com-
munication channel, it is possible to build the right encoders and decoders so that this
percentage, although not 100%, can be made as high as we desire. However, the proof of
Shannon’s theorem is probabilistic and only guarantees the exixtence of such good codes.
No specific codes were constructed in the proof that provides the desired accuracy for a
given channel. The main goal of Coding Theory is to establish good codes that fulfill the
assertions of Shannon’s theorem. During the last 50 years, while many good codes have been
constructed, but only from 1993, with the introduction of turbo codes4, the rediscoveries of
LDPC codes5, and the study of related codes and associated iterative decoding algorithms,
researchers started to see codes that approach the expectation of Shannon’s theorem in
practice.

2 Alphabets: Fields and Rings

While the algebraic theory of error-correcting codes has traditionally taken place in the
setting of vector spaces over finite fields, codes over finite rings have been studied since the

4Turbo codes were first introduced and developed in 1993 by Berrou, Glavieux, and Thitimajshima [11].

Turbo codes are a class of high-performance forward error correction (FEC) codes, which were the first

practical codes to closely approach the channel capacity, a theoretical maximum for the code rate at which

reliable communication is still possible given a specific noise level. Turbo codes are widely used in deep

space communications and other applications where designers seek to achieve reliable information transfer

over bandwidth-constrained or latency-constrained communication links in the presence of data-corrupting

noise.

The first class of turbo code was the parallel concatenated convolutional code (PCCC). Since the intro-

duction of the original parallel turbo codes in 1993, many other classes of turbo code have been discovered,

including serial versions and repeat-accumulate codes. Iterative Turbo decoding methods have also been

applied to more conventional FEC systems, including Reed-Solomon corrected convolutional codes.
5LDPC (low-density parity-check) codes were first introduced in 1963 by Robert G. Gallager in his

doctoral dissertation at MIT. At that time, it was impractical to implement and LDPC codes were forgotten,

but they were rediscovered in 1996. A LDPC code is a linear error correcting code, a method of transmitting

a message over a noisy transmission channel, and is constructed using a sparse bipartite graph. LDPC codes

are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold

to be set arbitrarily close on the binary erasure channel (BEC) to the Shannon limit for a symmetric memory-

less channel. The noise threshold defines an upper bound for the channel noise, up to which the probability

of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC

codes can be decoded in time linear to their block length.
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early 1970s. However, the papers on the subject during the 1970s and 1980s were scarse and
may have been considered mostly as a mere mathematical curiosity since they did not seem
to be aimed at solving any of the pressing open problems that were considered of utmost
importance at the time by coding theorists.

Some of the highlights of that period include the work of Blake [7], who, in 1972, showed
how to contruct codes over Zm from cyclic codes over GF (p) where p is a prime factor of m.
He then focused on studying the structure of codes over Zpr (cf. [8]). In 1977, Spiegel [118],
[119] generalized those results to codes over Zm, where m is an arbitrary positive integer.

There are well known families of nonlinear codes (over finite fields), such as Kerdock,
Preparata, Nordstrom-Robinson, Goethals, and Delsarte-Goethals codes [18], [39], [64], [65],
[82], [92], [102], [110], that have more codewords than every comparable linear codes known
to date. They have great error-correcting capabilities as well as remarkable structure, for
example, the weight distributions of Kerdock and Preparata codes are MacWilliams trans-
form of each other. Several researchers have investigated these codes and have shown that
they are not unique, and large numbers of codes exist with the same weight distributions
[4], [25], [77], [78], [79], [80], [120].

It was only until the early 1990s that the study of linear codes over finite rings gained
prominence, due to the discovery that these codes are actually equivalent to linear codes over
the ring of integers modulo four, the so-called Quaternary codes6 (cf. [23], [36], [71], [98], [99],
[108], [109]. Nechaev pointed out that the Kerdock codes are, in fact, cyclic codes over Z4 in
[99]. Furthermore, the intriguing relationship between the weight distributions of Kerdock
and Preparata codes, a relation that is akin to that between the weight distributions of a
linear code and its dual, was explained by Calderbank, Hammons, Kumar, Sloane and Solé
[23], [71] when they showed in 1993 that these well-known codes are in fact equivalent to
linear codes over the ring Z4 which are dual to one another. The families of Kerdock and
Preparata codes exist for all length n = 4k ≥ 16, and at length 16, they coincide, providing
the Nordstrom-Robison code [65], [102], [116], this code is the unique binary code of length
16, consisting 256 codewords, and minimum distance 6. In [23], [71] (see also [35], [36]), it
has also been shown that the Nordstrom-Robison code is equivalent to a quaternary code
which is self-dual. From that point on, codes over finite rings in general and over Z4 in
particular, have gained considerable prominence in the literature. There are now numerous
research papers on this subject and at least one book devoted to the study of Quaternary
Codes [122].

Although we did not elaborate much on the meaning of the "remarkable structure"
mentioned above between the Kerdock and Preparata codes and the corresponding codes
over Z4, let it suffice to say that there is an isometry between them that is induced by the

6In the coding theory literature, the term "quaternary codes" sometimes is used for codes over the finite

field GF(4). Throughout this paper, including references, unless otherwise stated, by quatenary codes we

mean codes over Z4.
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Gray map µ : Z4 → (Z2)
2 sending 0 to 00, 1 to 01, 2 to 11, and 3 to 10. The isometry relates

codes over Z4 equipped with the so-called Lee metric with the Kerdock and Preparata codes
with the standard Hamming metric. The point is that, from its inception, the theory of codes
over rings was not only about the introduction of an alternate algebraic structure for the
alphabet but also of a different metric for the new codes over rings. In addition to the Lee
metric, other alternative metrics have been considered by several authors.

There are at least two reasons why cyclic codes have been one of the most important
class of codes in coding theory. First of all, cyclic codes can be efficiently encoded using
shift registers, which explains their preferred role in engineering. In addition,cyclic codes
are easily characterized as the ideals of the specific quotient ring F [x]

〈xn−1〉 of the(infinite) ring
F [x] of polynomials with coefficients in the alphabet field F . It is this characterization that
makes cyclic codes suitable for generalizations of various sorts. The concepts of negacyclic
and constacyclic codes, for example, may be seen as focusing on those codes that correspond
to ideals of the quotient rings F [x]

〈xn+1〉 and
F [x]
〈xn−λ〉 (where λ ∈ F − {0}) of F [x]. In fact, the

most general such generalization is the notion of a polycyclic code. Namely those codes that
correspond to ideals of some quotient ring F [x]

〈f(x)〉 of F [x] [89].
All of notions above can easily be extended to the finite ring alphabet case by replacing

the finite field F by the finite ring R in each definition. Those concepts, when R is a chain
ring, are the main subject of our survey, which is an update version of the survey [55].

3 Chain Rings

Let R be a finite commutative ring. An ideal I of R is called principal if it is generated
by a single element. A ring R is a principal ideal ring if all of its ideals are principal. R is
called a local ring if R has a unique maximal ideal. Furthermore, a ring R is called a chain
ring if the set of all ideals of R is a chain under set-theoretic inclusion. It can be shown
easily that chain rings are principal ideal rings. Examples of finite commutative chain rings
include the ring Zpk of integers modulo pk, for a prime p, and the Galois rings GR(pk,m),
i.e. the Galois extension of degree m of Zpk (cf. [75], [96])7. These classes of rings have been
used widely as an alphabet for constacyclic codes. Various decoding schemes for codes over
Galois rings have been considered in [19]-[22].

The following equivalent conditions are well-known for the class of finite commutative
chain rings (cf. [54, Proposition 2.1]).

7Although we only consider finite commutative chain rings in this paper, it is worth noting that a finite

chain ring need not be commutative. The smallest noncommutative chain ring has order 16 [84], that can

be represented as R = GF(4)⊕GF(4), where the operations +, · are

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

(a1, b1) · (a2, b2) = (a1a2, a1b2 + b1a
2
2).
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Proposition 3.1. For a finite commutative ring R the following conditions are equivalent:

(i) R is a local ring and the maximal ideal M of R is principal,

(ii) R is a local principal ideal ring,

(iii) R is a chain ring.

Let ζ be a fixed generator of the maximal ideal M of a finite commutative chain ring
R. Then ζ is nilpotent and we denote its nilpotency index by t. The ideals of R form a
chain:

R = 〈ζ0〉 ) 〈ζ1〉 ) · · · ) 〈ζt−1〉 ) 〈ζt〉 = 〈0〉.

Let R = R
M . By − : R[x] −→ R[x], we denote the natural ring homomorphism that

maps r 7→ r + M and the variable x to x. The following is a well-known fact about finite
commutative chain ring (cf. [96]).
Proposition 3.2. Let R be a finite commutative chain ring, with maximal ideal M = 〈ζ〉,
and let t be the nilpotency ζ. Then

(a) For some prime p and positive integers k, l (k ≥ l), |R| = pk, |R| = pl, and the
characteristic of R and R are powers of p,

(b) For i = 0, 1, . . . , t, |〈ζi〉| = |R|t−i. In particular, |R| = |R|t, i.e., k = lt.

Two polynomials f1, f2 ∈ R[x] are called coprime if 〈f1〉+ 〈f2〉 = R[x], or equivalently,
if there exist polynomials g1, g2 ∈ R[x] such that f1g1 + f2g2 = 1. The coprimeness of two
polynomials in R[x] is defined similarly.
Lemma 3.3. (cf. [54, Lemma 2.3, Remark 2.4]) Two polynomials f1, f2 ∈ R[x] are coprime
if and only if f1 and f2 are coprime in R[x]. Moreover, if f1, f2, . . . , fk are pairwise coprime

polynomials in R[x], then fi and
k∏
j 6=i

fj are coprime in R[x].

A polynomial f ∈ R[x] is called basic irreducible if f is irreducible in R[x]. A polynomial
f ∈ R[x] is called regular if it is not a zero divisor.

Proposition 3.4. (cf. [96, [Theorem XIII.2(c)]) Let f(x) = a0 + a1x + · · · + anx
n be in

R[x], then the following are equivalent:

(i) f is regular,

(ii) 〈a0, a1, . . . , an〉 = R,

(iii) ai is a unit for some i, 0 ≤ i ≤ n,

(iv) f 6= 0.
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The following Lemma guarantees that factorizations into product of pairwise coprime
polynomials over R lift to such factorizations over R (cf. [96, Theorem XIII.4]).

Lemma 3.5. (Hensel’s Lemma) Let f be a polynomial over R and assume f = g1g2 . . . gr
where g1, g2, . . . , gr are pairwise coprime polynomials over R. Then there exist pairwise
coprime polynomials f1, f2, . . . , fr over R such that f = f1f2 . . . fr and f i = gi for i =

1, 2, . . . , r.

Proposition 3.6. If f is a monic polynomial over R such that f is square free, then f

factors uniquely as a product of monic basic irreducible pairwise coprime polynomial.
In the general case, when f is not necessarily square-free, [26, Theorem 4], [27, Theorem

2], [113,Theorem 3.2] provide a necessary and sufficient condition for R[x]
〈f〉 to be a principal

ideal ring:

Proposition 3.7. Let f ∈ R[x] be a monic polynomial such that f is not square-free. Let
g, h ∈ R[x] be such that f = gh and g is the square-free part of f . Write f = gh+ ζw with
w ∈ R[x]. Then R[x]

〈f〉 is a principal ideal ring if and only if u 6= 0, and u and h are coprime.
The Galois ring of characteristic pa and dimension m, denoted by GR(pa,m), is the

Galois extension of degree m of the ring Zpa . Equivalently,

GR(pa,m) =
Zpa [z]

〈h(z)〉
,

where h(z) is a monic basic irreducible polynomial of degree m in Zpa [z].
Note that if a = 1, then GR(p,m) = GF(pm), and if m = 1, then GR(pa, 1) = Zpa . We

gather here some well-known facts about Galois rings (cf. [71], [75], [96]):
Proposition 3.8. Let GR(pa,m) =

Zpa [z]
〈h(z)〉 be a Galois ring, then the following hold:

(i) Each ideal of GR(pa,m) is of the form 〈pk〉 = pk GR(pa,m), for 0 ≤ k ≤ a. In
particular, GR(pa,m) is a chain ring with maximal ideal 〈p〉 = pGR(pa,m), and
residue field GF(pm).

(ii) For 0 ≤ i ≤ a, |pi GR(pa,m)| = pm(a−i).

(iii) Each element of GR(pa,m) can be represented as upk, where u is a unit and 0 ≤ k ≤ a,
in this representation k is unique and u is unique modulo 〈pn−k〉

(iv) h(z) has a root ξ, which is also a primitive (pm − 1)th root of unity. The set

Tm = {0, 1, ξ, ξ2, . . . , ξpm−2}

is a complete set of representatives of the cosets GR(pa,m)
pGR(pa,m) = GF(pm) in GR(pa,m).

Each element r ∈ GR(pa,m) can be written uniquely as
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r = ξ0 + ξ1p+ · · ·+ ξa−1p
a−1,

with ξi ∈ Tm, 0 ≤ i ≤ a− 1.

(v) For each positive integer d, there is a natural injective ring homomorphism GR(pa,m)→
GR(pa,md).

(vi) There is a natural surjective ring homomorphism GR(pa,m) → GR(pa−1,m) with
kernel 〈pa−1〉.

(vii) Each subring of GR(pa,m) is a Galois ring of the form GR(pa, l), where l divides m.
Conversely, if l divides m then GR(pa,m) contains a unique copy of GR(pa, l). That
means, the number of subrings of GR(pa,m) is the number of positive divisors of m.

4 Constacyclic Codes over Arbitrary Commutative Finite

Rings

Given an n-tuple (x0, x1, . . . , xn−1) ∈ Rn, the cyclic shift τ and negashift ν on Rn are
defined as usual, i.e.,

τ(x0, x1, . . . , xn−1) = (xn−1, x0, x1, · · · , xn−2),

and

ν(x0, x1, . . . , xn−1) = (−xn−1, x0, x1, · · · , xn−2).

A code C is called cyclic if τ(C) = C, and C is called negacyclic if ν(C) = C.
More generally, if λ is a unit of the ring R, then the λ-constacyclic (λ-twisted) shift τλ

on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, · · · , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed under the
λ-constacyclic shift τλ.

Equivalently, C ia a λ-constacyclic code if and only if

CSλ ⊆ C,

where Sλ is the λ-constacyclic shift matrix given by
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Sλ =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

λ 0 · · · 0

 =


0
... In−1
0

λ 0 · · · 0

 ⊆ Rn×n.
In light of this definition, when λ = 1, λ-constacyclic codes are cyclic codes, and when

λ = −1, λ-constacyclic codes are just negacyclic codes.
Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its polynomial rep-

resentation c(x) = c0 + c1x + · · · + cn−1x
n−1, and the code C is in turn identified with

the set of all polynomial representations of its codewords. Then in the ring R[x]
〈xn−λ〉 , xc(x)

corresponds to a λ-constacyclic shift of c(x). From that, the following fact is well-known
and straightforward:

Proposition 4.1. A linear code C of length n is λ-constacyclic over R if and only if
C is an ideal of R[x]

〈xn−λ〉 .
The dual of a cyclic code is a cyclic code, and the dual of a negacyclic code is a negacyclic

code. In general, we have the following implication of the dual of a λ-constacyclic code.

Proposition 4.2. (cf. [45]) The dual of a λ-constacyclic code is a λ−1-constacyclic code.
For a nonempty subset S of the ring R, the annihilator of S, denoted by ann(S), is the

set

ann(S) = {f | fg = 0, for all g ∈ R}.

Then ann(S) is an ideal of R.
Customarily, for a polynomial f of degree k, its reciprocal polynomial xkf(x−1) will be

denoted by f∗. Thus, for example, if

f(x) = a0 + a1x+ · · ·+ ak−1x
k−1 + akx

k,

then

f∗(x) = xk(a0 + a1x
−1 + · · ·+ ak−1x

−(k−1) + akx
−k) = ak + ak−1x+ · · ·+ a1x

k−1 + a0x
k.

Note that (f∗)∗ = f if and only if the constant term of f is nonzero, if and only if
deg(f) = deg(f∗). We denote A∗ = {f∗(x) | f(x) ∈ A}. It is easy to see that if A is an ideal,
then A∗ is also an ideal.

Proposition 4.3. (cf. [53, Propositions 3.3, 3.4]) Let R be a finite commutative ring, and
λ be a unit of R.
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(a) Let a(x), b(x) ∈ R[x] be given as

a(x) = a0 + a1x+ · · ·+ an−1x
n−1,

b(x) = b0 + b1x+ · · ·+ bn−1x
n−1.

Then a(x)b(x) = 0 in R[x]
〈xn−λ〉 if and only if (a0, a1, . . . , an−1) is orthogonal to

(bn−1, bn−2, . . . , b0)

and all its λ−1-constacyclic shifts.

(b) Assume in addition that λ2 = 1, and C is a λ-constacyclic code of length n over R.
Then the dual C⊥ of C is (ann(C))∗.

When studying λ-constacyclic codes over finite fields, most researchers assume that
the code-length n is not divisible by the characteristic p of the field. This ensures that
xn−λ, and hence the generator polynomial of any λ-constacyclic code, will have no multiple
factors, and hence no repeated roots in an extension field. The case when the code length
n is divisible by the characteristic p of the field yields the so-called repeated-root codes,
which were first studied in 1967 by Berman [6], and then in the 1970s and 1980s by several
authors such as Massey et al. [95], Falkner et al. [62], Roth and Seroussi [111]. However,
repeated-root codes over finite fields were investigated in the most generality in the 1990s
by Castagnoli et al. [28], and van Lint [121], where they showed that repeated-root cyclic
codes have a concatenated construction, and are asymptotically bad. Nevertheless, such
codes are optimal in a few cases and that motivates further study of the class.

Repeated-root constacyclic codes over a class of finite chain rings have been extensively
studied over the last few years by many researchers, such as Abualrub and Oehmke [1], [2],
Blackford [12], [13], Dinh [40]-[46], Ling et al [60], [83], [86], Sălăgean et al [104], [113], etc.

To distinguish the two cases, codes where the code-length is not divisible by the char-
acteristic p of the residue field R are called simple-root codes. We will consider this class of
codes in Section 5, and the class of repeated-root codes in Section 6.

A recent publication [80] introduces the dual notions of polycyclic and sequential codes.
In addition to being generalizations of constacyclicity, they serve to characterize precisely
that concept in terms of a symmetry criterion. We mention this result as Theorem 7.2 at
the end of this paper.
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5 Simple-Root Cyclic and Negacyclic Codes over Finite Chain

Rings

All codes considered in this section are simple-root codes over a finite chain ring R,
i.e., the code-length n is not divisible by the characteristic p of the residue field R. The
structure of cyclic codes over Zpa was obtained by Calderbank and Sloane in 1995 [24], and
later on with a different proof by Kanwar and López-Permouth in 1997 [81]. In 1999, with
a different technique, Norton and Sălăgean extended the structure theorems given in [24]
and [81] to cyclic codes over finite chain rings (cf. [103]), they used an elementary approach
which did not appeal to Commutative Algebra as that of [24] and [81] did.

Let R be a finite chain ring with the maximal ideal 〈ζ〉, and t be the nilpotency of ζ.
For a linear code C of length n over R, the submodule quotient of C by r ∈ R is the code

(C : r) =
{
e ∈ Rn

∣∣∣ er ∈ C} .
Thus we have a tower of linear codes over R

C = (C : ζ0) ⊆ . . . (C : ζi) · · · ⊆ (C : ζt−1).

Its projection to R forms a tower of linear codes over R

C = (C : ζ0) ⊆ . . . (C : ζi) · · · ⊆ (C : ζt−1).

If C is a cyclic code over R, then for 0 ≤ i ≤ t − 1, (C : ζi) is a cyclic over R, and
(C : ζi) is a cyclic over R. For codes over Z4, C = (C : ζ0) ⊆ (C : ζ), were first introduced
by Conway and Sloane in [36], and later were generalized to codes over any chain ring by
Norton and Sălăgean [103].

For a code C of length n over R, a matrix G is called a generator matrix of C if the
rows of G span C, and none of them can be written as a linear combination of other rows
of G. A generator matrix G is said to be in standard form if after a suitable permutation
of the coordinates,

G =


Ik0 A0,1 A0,2 A0,3 · · · A0,t−1 A0,t

0 ζIk1 ζA1,2 ζA1,3 · · · ζA1,t−1 ζA1,t

0 0 ζ2Ik2 ζ2A2,3 · · · ζ2A2,t−1 ζ2A2,t

...
...

...
...

. . .
...

...
0 0 0 0 · · · ζt−1Ikt−1 ζt−1At−1,t

 =


A0

ζA1

ζ2A2

...
ζt−1At−1

 ,

where the columns are grouped into blocks of sizes k0, k1, . . . , kt−1, n −
∑t−1

i=0 ki. The
generator matrix in standard form G is associated to the matrix
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A =


A0

A1

A2

...
At−1

 .

We denote by γ(C) the number of rows of a generator matrix in standard form of C, and
γi(C) the number of rows divisible by ζi but not by ζi+1. Equivalently, γ0(C) = dim(C),
and γi(C) = dim (C : ζi)− dim (C : ζi−1), for 1 ≤ i ≤ t− 1

Obviously, γ(C) =
∑t−1

i=0 γi(C).
For a linear code C of length n over a finite chain ring R, the information on generator

matrices, parity check matrices, and sizes of C, its dual C⊥, its projection C to the residue
field R, is given as follows.
Theorem 5.1. (cf. [103, Lemma 3.4, Theorems 3.5, 3.10]) Let C be a linear code of length
n over a finite chain ring R, and

G =


Ik0 A0,1 A0,2 A0,3 · · · A0,t−1 A0,t

0 ζIk1 ζA1,2 ζA1,3 · · · ζA1,t−1 ζA1,t

0 0 ζ2Ik2 ζ2A2,3 · · · ζ2A2,t−1 ζ2A2,t

...
...

...
...

. . .
...

...
0 0 0 0 · · · ζt−1Ikt−1 ζt−1At−1,t

 =


A0

ζA1

ζ2A2

...
ζt−1At−1

 ,

is a generator matrix in standard form of C, which is associated to the matrix

A =


A0

A1

A2

...
At−1

 .

Then

(a) For 0 ≤ i ≤ t− 1, (C : ζi) has generator matrix


A0

A1

...
Ai

 ,

and dim (C : ζi) = k0 + k1 + · · ·+ ki.
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(b) If E0 ⊆ E1 ⊆ · · · ⊆ Et−1 are linear codes of length n over R, then there is a code D of
length n over R such that (D : ζi) = Ei, for 0 ≤ i ≤ t− 1.

(c) The parameters k0, k1, . . . , kt−1 are the same for any generator matrix G in

standard form for C.

(d) Any codeword c ∈ C can be written uniquely as

c = (v0, v1, . . . , vt−1)G,

where vi ∈ (R/ζt−iR)ki ∼= (ζiR)ki.

(e) The number of codewords in C is

|C| =
∣∣R∣∣∑t−1

i=0(t−i)ki .

(f) If, for 0 ≤ i < j ≤ t,

Bi,j = −
j−1∑
l=i+1

Bi,lA
tr
t−j,t−l −Atr

t−j,t−i,

then

H =


B0,t B0,t−1 · · · B0,1 In−γ(C)

ζB1,t ζB1,t−1 · · · ζIγt−1(C) 0
...

...
. . .

...
...

ζt−1Bt−1,t ζt−1Iγ1(C) · · · 0 0

 =


B0

ζB1

...
ζt−1Bt−1


is a generator matrix for C⊥ and a parity check matrix for C.

(g) For 0 ≤ i ≤ t− 1, (C⊥ : ζi) = (C : ζi)
⊥
, γ0(C⊥) = n− γ(C), and γi(C⊥) = γt−i(C).

(h) |C⊥| = |Rn|/|C|, and
(
C⊥
)⊥

= C.

(i) Associate the generator matrix H of C⊥ with the matrix

B =


B0

B1

...
Bt−1

 .
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Then C has generator matrix A0, and parity check matrix

B =


B0

B1

...
Bt−1

 .

The set {ζa0ga0 , ζa1ga1 , . . . , ζakgak} is said to be a generating set in standard form of
the cyclic code C if the following conditions hold:

◦ C = 〈ζa0ga0 , ζa1ga1 , . . . , ζakgak〉;

◦ 0 ≤ k < t;

◦ 0 ≤ a0 < a1 < · · · < ak < t;

◦ gai ∈ R[x] is monic for 0 ≤ i ≤ k;

◦ deg(gai) > deg(gai+1) for 0 ≤ i ≤ k − 1;

◦ gak | gak−1
| . . . | ga0 | (xn − 1).

The existence and uniqueness of a generator set in standard form of a cyclic code were
proven by Calderbank and Sloane [24] in 1995 for the alphabet Zpa , and in 2000, that were
extended to the general case of any chain ring R by Norton and Sălăgean [103].
Proposition 5.2. (cf. [24, Theorem 6], [103, Theorem 4.4] Any non-zero cyclic code C over
a finite chain ring R has a unique generator set in standard form.

If the constant term a0 of f is a unit, we denote f# = a−10 f∗. In particular, the constant
term of any factor of xn − 1 is a unit.

Moreover, if f(x) is a factor of xn − 1, we denote f̂(x) = xn−1
f(x) .

The generator set in standard form of a cyclic code is related to its generating matrix,
and the generator set in standard form of its dual as follows:
Theorem 5.3. (cf. [103, Theorems 4.5, 4.9]) Let C be a cyclic code, and

{ζa0ga0 , ζa1ga1 , . . . , ζakgak}

be its generating set in standard form. Then

(a) If, for 0 ≤ i ≤ k, di = deg(gak), and by convention, d−1 = n, dk+1 = 0, and

T =

k⋃
i=0

{
ζaigaix

di−1−di−1, . . . , ζaigaix, ζ
aigai

}
,

then T defines a generator matrix for C;
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(b) Any c ∈ C can be uniquely represented as c =
∑k

i=0 higaiζ
ai, where

hi ∈
(
R
/
Rζt−ai

)
[x] ∼= (Rζai) [x],

and deg(hi) < di−1 − di;

(c)

γj(C) =

{
di−1 − di, if j = ai for some i,

0, otherwise
,

and

|C| =
∣∣R∣∣ k∑i=0

(t−ai)(di−1−di)
.

(d) Let ak+1 = t, and ga−1 = xn − 1. For 0 ≤ i ≤ k + 1, denote bi = t − ak+1−i, and
g′bi = ĝ#ak−i. Then {ζb0g′b0 , ζ

b1g′b1 , . . . , ζ
bkg′bk} is the generating set in standard form

for C⊥.

In 2004, Dinh and López-Permouth [54] generalized the methods of [24], [81] for simple-
root cyclic codes over Zpato obtain the structures of simple-root cyclic and self-dual cyclic
codes over finite chain rings R. The strategy was independent from the approach in [103]
and the results were more detailed.

Since the code-length n and the characteristic p of the residue field R are coprime, xn−1

factors uniquely to a product of monic basic irreducible pairwise-coprime polynomials in
R[x]. The ambient ring R[x]

〈xn−1〉 can be decomposed as a direct sum of chain rings. So, any

cyclic code of length n over R, viewed as an ideal of this ambient ring R[x]
〈xn−1〉 , is represented

as a direct sum of ideals from those chain rings.
Theorem 5.4. (cf. [54, Lemma 3.1, Theorem 3.2, Corollary 3.3]) Let R be a finite chain
ring with the maximal ideal 〈ζ〉, and t be the nilpotency of ζ. Then

(a) If f is a regular basic irreducible polynomial of the ring R[x], then R[x]
〈f〉 is also a chain

ring whose ideals are 〈ζi〉, 0 ≤ i ≤ t.

(b) Let xn − 1 = f1f2 . . . fr be a representation of xn − 1 as a product of monic basic
irreducible pairwise-coprime polynomials in R[x]. Then R[x]

〈xn−1〉 can be represented as

a direct sum of chain rings R[x]
〈fi〉 .

R[x]

〈xn − 1〉
∼=

r⊕
i=1

R[x]

〈fi〉
.
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(c) Each cyclic code of length n over R, i.e., each ideal of R[x]
〈xn−1〉 , is a sum of ideals of the

form 〈ζj f̂i〉, where 0 ≤ j ≤ t, 1 ≤ i ≤ r.

(d) The numbers of cyclic codes over R of length n is (t + 1)r, where r is the number of
factors in the unique factorization of xn − 1 into a product of monic basic irreducible
pairwise coprime polynomials.

For each cyclic code C, using the decomposition above, a unique set of pairwise coprime
monic polynomials that generates C is constructed, which in turn provides the sizes of C and
its dual C⊥, and a set of generators for C⊥. The set of pairwise coprime monic polynomials
generators of C also gives a single generator of C, that implies R[x]

〈xn−1〉 is a principle ideal
ring.
Theorem 5.5. (cf. [54, Theorems 3.4, 3.5, 3.6, 3.8, 3.10, 4.1]) Let R be a finite chain ring
with the maximal ideal 〈ζ〉, and t be the nilpotency of ζ, and let C be a cyclic code of length
n over R. Then

(a) There exists a unique family of pairwise coprime monic polynomials F0, F1, . . . , Ft in
R[x] such that F0F1 . . . Ft = xn − 1 and C = 〈F̂1, ζF̂2, . . . , ζ

t−1F̂t〉.

(b) The number of codewords in C is

|C| =
∣∣R∣∣t−1∑

i=0
(t−i) degFi+1

.

(c) There exist polynomials g0, g1, . . . , gt−1 in R[x] such that C = 〈g0, ζg1, . . . , ζt−1gt−1〉
and

gt−1|gt−2| . . . |g1|g0|(xn − 1).

(d) Let F = F̂1+ζF̂2+· · ·+ζt−1F̂t. Then F is a generating polynomial of C, i.e., C = 〈F 〉.
In particular, R[x]

〈xn−1〉 is a principal ideal ring.

(e) The dual C⊥ of C is the cyclic code

C⊥ = 〈F̂ ∗0 , ζF̂ ∗t , . . . , ζt−1F̂ ∗2 〉,

and

|C⊥| =
∣∣R∣∣ t∑i=1

idegFi+1

.
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(f) Let G = F̂ ∗0 + ζF̂ ∗t + · · · + ζt−1F̂ ∗2 . Then G is a generating polynomial of C⊥, i.e.,
C⊥ = 〈G〉.

(g) C is self-dual if and only if Fi is an associate of F ∗j for all i, j ∈ {0, . . . , t} such that
i+ j ≡ 1 (mod t+ 1).

If the nilpotency t of ζ is even, then 〈ζt/2〉 is a cyclic self-dual code, which is the so-called
trivial self-dual code. Using the structure of cyclic codes above, a necessary and sufficient
condition for the existence of nontrivial self-dual cyclic codes were obtained.
Theorem 5.6. (cf. [54, Theorems 4.3, 4.4]) Assume that t is an even integer, then the
following conditions are equivalent:

(a) Nontrivial self-dual cyclic codes exist,

(b) There exists a basic irreducible factor f ∈ R[x] of xn − 1 such that f and f∗ are not
associate,

(c) pi 6≡ − 1 (mod n) for all positive integers i.

When p is an odd prime, a characterization of integers n, where pi 6≡ − 1 (mod n) for
all positive integers i, is still unknown. When p = 2, the integer n, where 2i 6≡ − 1 (mod n)

for all positive integers i, was completely characterized by Moree in Appendix B of [109]
and more details in [97].
Theorem 5.7. (cf. [109, Theorem 4], [54, Theorem 4.5]) Let R be a finite chain ring with
the maximal ideal 〈ζ〉 where |R| = 2lt, |R| = 2l and t is the nilpotency of ζ. If t is even,
n is odd, then nontrivial self-dual cyclic codes of length n over R exist if and only if n is
divisible by either of the followings:

• a prime τ ≡ 7 (mod 8), or

• a prime τ ≡ 1 (mod 8), where the order of 2 (mod ρ) is odd, or

• different odd primes % and σ such that the order of 2 (mod %) is 2ςi and the order of 2

(mod σ) is 2ςj, where i is odd, j is even, and ς ≥ 1.

There are cases where pi ≡ −1 (mod n) for some integer i, which leads to the non-
existence of nontrivial self-dual cyclic codes for certain values of n and p. Recall that for
relatively prime integers a,m, a is called a quadratic residue or quadratic nonresidue of m
according to whether the congruence x2 ≡ a (mod m) has a solution or not. We refer to
[54] for important properties of quadratic residues and related concepts.
Theorem 5.8. (cf. [54, Corollaries 4.6, 4.7, 4.8]) Let R be a finite chain ring with the
maximal ideal 〈ζ〉, |R| = plt, where |R̄| = pl, and t is the nilpotency of ζ, such that t is
even. Then
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(a) If n is a prime, then nontrivial self-dual cyclic codes of length n over R do not exist
in the following cases

• p = 2, n ≡ 3, 5 (mod 8),

• p = 3, n ≡ 5, 7 (mod 12),

• p = 5, n ≡ 3, 7, 13, 17 (mod 20),

• p = 7, n ≡ 5, 11, 13, 15, 17, 23 (mod 28),

• p = 11, n ≡ 3, 13, 15, 17, 21, 23, 27, 29, 31, 41 (mod 44).

(b) If n is an odd prime different than p, and p is a quadratic nonresidue of nk, where
k ≥ 1, then nontrivial self-dual cyclic codes of length n over R do not exist.

(c) If n is an odd prime, then nontrivial self-dual cyclic codes of length n over R do not
exist in the following cases:

• p ≡ 1 (mod 4), and there exists a positive integer k such that gcd(p, 4nk) = 1 and
p is a quadratic nonresidue of 4nk,

• p ≡ 1 (mod 8), and there exist positive integers i, j such that i > 2, gcd(p, 2inj) = 1

and p is a quadratic nonresidue of 2inj.

Furthermore, let m = 2k0pk11 . . . pkrr be the prime factorization of m > 1. Assume that
gcd(p,m) = 1, p is a quadratic nonresidue of m, and

p ≡

{
1 (mod 4), if 4 | m but 86 | m,

1 (mod 8), if 8 | m,

then there exists an integer i ∈ {1, 2, . . . , r} such that nontrivial self-dual cyclic codes
of length pi over R do not exist.

Remark 5.9.

5.9.1. All results in this section for simple-root cyclic codes also hold for simple-root nega-
cyclic codes, reformulated accordingly. We obtain valid results if we replace "cyclic"
by "negacyclic" and xn − 1 by xn + 1.

5.9.2. Most of the techniques that Dinh and López-Permouth [54] used for simple-root
cyclic codes over finite chain rings (Theorems 5.4 − 5.8) are the most general form
of the techniques that were first introduced by Pless et al [108], [109] in 1996 for
simple-root cyclic codes over Z4. Those were previously extended to the setting of
simple-root cyclic codes over Zpm by Kanwar and López-Permouth [81] in 1997, and
simple-root cyclic codes over Galois rings GR(pa,m) by Wan [123] in 1999.
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5.9.3. As shown by Hammons et al. [71], well-known nonlinear binary codes can be con-
structed from quaternary linear codes using the Gray map. The Gray map is the map
G : Zn4 −→ Z2n

2 , defined as follows: for each c ∈ Zn4 , c is uniquely represented as
c = a + 2b, where a, b ∈ Zn2 , then G(c) = (b, a ⊕ b), where ⊕ is the componentwise
addition of vectors modulo 2. The Gray map is significant because it is an isometry, in
the sense that the Lee weight of c is equal to the Hamming weight of G(c). The Gray
map also preserves duality, since for any linear code C over Z4, G(C) and G(C⊥) are
formally dual, i.e., their Hamming weight enumerators are MacWilliams transforms
of each other.

However, the Gray map does not preserve linearity, in fact the Gray image of a linear
code is usually not linear. It was shown in [71] that for a Z4-linear cyclic code of odd
length C, its Gray image G(C) is linear if and only if for any codewords c1, c2 ∈ C,
2(c1 ∗ c2) ∈ C, where ∗ is the componentwise multiplication of vectors, which is
defined as a ∗ b = (a0b0, . . . , an−1bn−1). Indeed, binary nonlinear codes having better
parameters than their linear counterparts have been constructed via the Gray map.

Wolfmann [124], [125] showed that the Gray image of a simple-root linear negacyclic
code over Z4 is a (not necessarily linear) cyclic binary code. He classified all Z4-linear
negacyclic codes of odd length and provided a method to determine all linear binary
cyclic codes of length 2n (n is odd), that are images of negacyclic codes under the
Gray map. Therefore, the Gray image of a simple-root negacyclic code over Z4 is
permutation-equivalent to a binary cyclic code under the Nechaev permutation.

6 Repeated-Root Cyclic and Negacyclic Codes over Finite

Chain Rings

Except otherwise stated, all codes in this section are repeated-root codes over a finite
chain ring R, i.e., the code-length n is divisible by the characteristic p of the residue field
R.

When the code length n is odd, there is a one-to-one correspondence between cyclic
and negacyclic codes (single-root or repeated-root) over any finite commutative ring:

Proposition 6.1. (cf.[54, Proposition 5.1]) Let R be a finite commutative ring and n be an
odd integer. The map ξ : R[x]

〈xn−1〉 −→
R[x]
〈xn+1〉 defined by

ξ(f(x)) = f(−x), is a ring isomorphism. In particular, A is an ideal of R[x]
〈xn−1〉 if and

only if ξ(A) is an ideal of R[x]
〈xn+1〉 . Equivalently, A is a cyclic code of length n over R if and

only if ξ(A) is a negacyclic code of length n over R.
It was shown by Sălăgean in [113] that repeated-root cyclic and negacyclic codes over

finite chain rings in general are not principally generated:
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Proposition 6.2. (cf. [113, Theorem 3.4]) Let R be a finite chain ring whose residue field
has characteristic p. If p |n then:

(i) R[x]
〈xn−1〉 is not a principal ideal ring.

(ii) If p is odd or p = 2 and R is not a Galois ring then R[x]
〈xn+1〉 is not a principal ideal

ring.

(iii) If p = 2 and R is a Galois ring then R[x]
〈xn+1〉 is a principal ideal ring.

The description of generators of ideals of R[x] by Gröbner bases were developed in [100],
[101], [104] for a chain ring R. Sălăgean [104], [113] used Gröbner bases to obtain structure
of repeated-root cyclic codes over finite chain rings, and furthermore provide generating
matrices, sizes, and Hamming distances of such codes.
Theorem 6.3. (cf. [104, Theorem 4.2], [113, Theorems 4.1, 5.1, 6.1]) Let R be a finite chain
ring with the maximal ideal 〈ζ〉, and t be the nilpotency of ζ. If C is a non-zero cyclic code
of length n over R, then

(a) C admits a set of generators

C = 〈ζa0ga0 , ζa1ga1 , . . . , ζakgak〉

such that

(i) 0 ≤ k < t;

(ii) 0 ≤ a0 < a1 < · · · < ak < t;

(iii) gai ∈ R[x] is monic for 0 ≤ i ≤ k;

(iv) deg(gai) > deg(gai+1) for 0 ≤ i ≤ k − 1;

(v) For 0 ≤ i ≤ k, ζai+1gai ∈ 〈ζai+1gai+1 , . . . , ζ
akgak〉 in R[x];

(vi) ζa0(xn − 1) ∈ 〈ζa0ga0 , ζa1ga1 , . . . , ζakgak〉 in R[x].

(b) This set {ζa0ga0 , ζa1ga1 , . . . , ζakgak} of generator is a strong Gröbner basis. It is not
necessarily unique. However, the cardinality k of the basis, the degrees of its polyno-
mials and the exponents a0, a1, . . . , ak are unique.

(c) Denote di = deg(gai) for 0 ≤ i ≤ k, and d−1 = n. Then the matrix consisting of the
rows corresponding to the codewords ζaixjgai, with 0 ≤ i ≤ k and 0 ≤ j ≤ di−1−di−1,
is a generator matrix for C.
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(d) The number of codewords in C is

|C| =
∣∣R∣∣ k∑i=0

(t−ai)(di−1−di)
.

(e) The Hamming distance of C equals the Hamming distance of 〈gak〉.

(f) The results in parts (a), (b), (c), (d), (e) hold for negacyclic codes, reformulated accord-
ingly by replacing xn − 1 by xn + 1.

In fact, Theorem 6.3(a) provides a structure theorem for both simple-root and repeated-
root cyclic codes. Conditions (v) and (vi) imply that gak | gak−1

| . . . | ga0 | (xn − 1). In the
simple-root case, the conditions (v) and (vi) can be replaced by the stronger condition
gak | gak−1

| . . . | ga0 | (xn − 1), as in Proposition 5.2, giving a structure theorem for simple-
root cyclic codes. For repeated-root cyclic codes, conditions (v) and (vi) can not be improved
in general, [104, Example 3.3] gave cyclic codes for

which no set of generators of the form given in Theorem 6.3(a) has the property
gak | gak−1

| . . . | ga0 | (xn − 1).

Most of the research on repeated-root codes concentrated on the situation where the
chain ring is a Galois ring, i.e., R = GR(pa,m). In this case, using polynimial representation,
it is easy to show that the ideals 〈x − 1, p〉, and 〈x + 1, p〉 are the sets of non-invertible
elements of GR(pa,m)[x]

〈xps−1〉 , and GR(pa,m)[x]
〈xps+1〉 , respectively. Therefore, GR(pa,m)[x]

〈xps−1〉 , and GR(pa,m)[x]
〈xps+1〉

are local rings whose maximal ideals are 〈x− 1, p〉, and 〈x+ 1, p〉. When a ≥ 2, GR(pa,m)

is not a field, and Proposition 6.2 gives us information on the ambient rings of cyclic and
negecyclic codes of length ps over GR(pa,m):

Proposition 6.4. Let a ≥ 2, then the following conditions hold true:

(i) GR(pa,m)[x]
〈xps−1〉 is a local ring with maximal ideal 〈x− 1, p〉, but it is not a chain ring.

(ii) If p is odd, GR(pa,m)[x]
〈xps+1〉 is a local ring with maximal ideal 〈x+1, p〉, but it is not a chain

ring

(iii) If p = 2, GR(pa,m)[x]
〈xps+1〉 is a chain ring with maximal ideal 〈x+ 1〉.

When a = 1, the Galois ring GR(pa,m) is the Galois field Fpm . Dinh [44] showed that
the ambient rings Fpm [x]

〈xps−1〉 and
Fpm [x]

〈xps+1〉 are chain rings, and used this to establish structure
of cyclic and negacyclic codes of length ps over Fpm , as well as the Hamming distances of
all such codes:

Theorem 6.5 (cf. [44]). The ring Fpm [x]

〈xps−1〉 and Fpm [x]

〈xps+1〉 are chain ring with maximal
ideals 〈x − 1〉, 〈x + 1〉, respectively. Cyclic and negacyclic codes of length ps over Fpm are
precisely the ideals 〈(x−1)i〉 of Fpm [x]

〈xps−1〉 , and 〈(x+ 1)i〉 of Fpm [x]

〈xps+1〉 , for i ∈ {0, 1, . . . , p
s}. The
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cyclic code 〈(x− 1)i〉 ⊆ Fpm [x]

〈xps−1〉 , and negacyclic code 〈(x+ 1)i〉 ⊆ Fpm [x]

〈xps+1〉 each has pm(ps−i)

codewords. Their dual codes are the cyclic code 〈(x− 1)p
s−i〉 ⊆ Fpm [x]

〈xps−1〉 and negacyclic code

〈(x + 1)p
s−i〉 ⊆ Fpm [x]

〈xps+1〉 , respectively. The cyclic code 〈(x − 1)i〉 ⊆ Fpm [x]

〈xps−1〉 and negacyclic

code 〈(x+ 1)i〉 ⊆ Fpm [x]

〈xps−1〉 have the same Hamming distance di, which is determined by:

di =



1, if i = 0

β + 2, if β ps−1 + 1 ≤ i ≤ (β + 1) ps−1

where 0 ≤ β ≤ p− 2

(t+ 1)pk, if ps − ps−k + (t− 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + tps−k−1

where 1 ≤ t ≤ p− 1, and 1 ≤ k ≤ s− 1

0, if i = ps.

When p = 2, there is no one-to-one correspondence between cyclic and negacyclic codes
of length 2s over GR(2a,m) (Proposition 6.1 does not hold when the code length is even). In
2005, Dinh gave the structure of such negacyclic codes, and the Hamming distances of most
of them in [40], and later on, in [46], obtained the Hamming and homogeneous distances8

of all of them, using their structure in [40], and the Hamming distances of 2m-ary cyclic
codes in Theorem 6.5:
Theorem 6.6. (cf. [40], [46]) The ring GR(2a,m)[x]

〈x2s+1〉 is a chain ring with maximal ideal 〈x+1〉
and residue field GF(2m). Negacyclic codes of length 2s over the Galois ring GR(2a,m) are

8The homogeneous weight was first introduced in [32] (see also [33], [34]) over integer residue rings, and

later over finite Frobenius rings. This weight has numerous applications for codes over finite rings, such as

constructing extensions of the Gray isometry to finite chain rings [66], [72], [73], or providing a combinatorial

approach to MacWilliams equivalence theorems (cf. [90], [91], [126]) for codes over finite Frobenius rings

[67]. The homogeneous distance of codes over the Galois rings GR(2a,m) is defined as follows.

Let a ≥ 2, the homogeneous weight on GR(2a,m) is a weight function on GR(2a,m) given as

wth : GR(2a,m) −→ N, r 7→


0, if r = 0

(2m − 1) 2m(a−2), if r ∈ GR(2a,m)
∖
2a−1 GR(2a,m)

2m(a−1), if r ∈ 2a−1 GR(2a,m)
∖
{0}.

The homogeneous weight of a codeword (c0, c1, . . . , cn−1) of length n over GR(2a,m) is the rational sum

of the homogeneous weights of its components, i.e.,

wth(c0, c1, . . . , cn−1) = wth(c0) + wth(c1) + · · ·+wth(cn−1).

The homogeneous distance (or minimum homogeneous weight) dh of a linear code C is the minimum

homogeneous weight of nonzero codewords of C:

dh(C) = min{wth(x− y) : x, y ∈ C, x 6= y} = min{wth(c) : c ∈ C, c 6= 0}.
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precisely the ideals 〈(x+1)i〉, 0 ≤ i ≤ 2sa, of GR(2a,m)[x]
〈x2s+1〉 . Each negacyclic code C = 〈(x+1)i〉

has 2m(2sa−i) codewords, its dual is the negacyclic code 〈(x + 1)2
sa−i〉, which contains 2mi

codewords. The Hamming distance d(C) and homogeneous distances dh(C) are completely
determined as follows:

d(C) =



0 if i = 2sa

1 if 0 ≤ i ≤ 2s(a− 1)

2 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1

2k+1 if 2s(a− 1) + 2s − 2s−k + 1 ≤ i ≤ 2s(a− 1) + 2s − 2s−k + 2s−k−1,

i.e., 2s(a− 1) + 1 +
∑k

l=1 2s−l ≤ i ≤ 2s(a− 1) +
∑k+1

l=1 2s−l,

where 1 ≤ k ≤ s− 1.

dh(C) =



0 if i = 2sa

(2m − 1) 2m(a−2) if 0 ≤ i ≤ 2s(a− 2)

2m(a−1) if 2s(a− 2) + 1 ≤ i ≤ 2s(a− 1)

2m(a−1)+1 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1

2m(a−1)+k+1 if 2s(a− 1) + 2s − 2s−k + 1 ≤ i ≤ 2s(a− 1) + 2s − 2s−k + 2s−k−1,

i.e., 2s(a− 1) + 1 +
∑k

l=1 2s−l ≤ i ≤ 2s(a− 1) +
∑k+1

l=1 2s−l,

where 1 ≤ k ≤ s− 1.

If the dimension m = 1, the Galois ring GR(2a,m) is the ring Z2a . [43] Established the
Hamming, homogeneous, Lee9, and Euclidean10 distances of all negacyclic code of length

9The Lee distance, named after its originator [85], is a good alternative to the Hamming distance in

algebraic coding theory, especially for codes over Z4. For instance, the Lee distance plays an important role

in constructing an isometry between binary and quarternary codes via the Gray map in a landmark paper of

the theory of codes over rings (cf. [23], [71]). Classically, for codes over finite fields, Berlekamp’s negacyclic

codes [9], [10], the class of cyclic codes investigated in [31], the class of alternant codes discussed in [112],

are examples of codes designed with the Lee metric in mind.

Let z ∈ Z2a , the Lee value of z, denoted by |z|L, is given as

|z|L =

{
z, if 0 ≤ z ≤ 2a−1

2a − z, if 2a−1 < z ≤ 2a − 1

The Lee weight of a codeword (c0, c1, . . . , cn−1) of length n over Z2a is the rational sum of the Lee values

of its components:

wtL(c0, c1, . . . , cn−1) = |c0|L + |c1|L + · · ·+ |cn−1|L.
The Lee distance (or minimum Lee weight) dL of a linear code C is the minimum Lee weight of nonzero

codewords of C:

dL(C) = min{wtL(x− y) : x, y ∈ C, x 6= y} = min{wtL(c) : c ∈ C, c 6= 0}.

10As codes over Z4 have gained more prominence, interesting connections with binary codes and unimod-
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2s over Z2a :
Theorem 6.7. (cf. [43]) Let C be a negacyclic code of length 2s over Z2a. Then C =

〈(x+ 1)i〉 ⊆ Z2a [x]
〈x2s+1〉 , for i ∈ {0, 1, . . . , 2

sa}, and the Hamming distance d(C), homogeneous
distance dh(C), Lee distance dL(C), and Euclidean distance dE(C) of C are determined by

• d(C) =



0 if i = 2sa

1 if 0 ≤ i ≤ 2s(a− 1)

2 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1

2k+1 if 2s(a− 1) + 1 +
k∑

j=1

2s−j ≤ i ≤ 2s(a− 1) +
k+1∑
j=1

2s−j , for 1 ≤ k ≤ s− 1

• dh(C) =



0 if i = 2sa

2a−2 if 0 ≤ i ≤ 2s(a− 2)

2a−1 if 2s(a− 2) + 1 ≤ i ≤ 2s(a− 1)

2a if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1

2a+k if 2s(a− 1) + 1 +
k∑

j=1

2s−j ≤ i ≤ 2s(a− 1) +
k+1∑
j=1

2s−j , for 1 ≤ k ≤ s− 1

• dL(C) =



0 if i = 2sa

1 if i = 0

2 if 1 ≤ i ≤ 2s

2l+1 if 2sl + 1 ≤ i ≤ 2s(l + 1), for 1 ≤ l ≤ a− 2

2a if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1

2a+k if 2s(a− 1) + 1 +
k∑

j=1

2s−j ≤ i ≤ 2s(a− 1) +
k+1∑
j=1

2s−j , for 1 ≤ k ≤ s− 1

ular lattices were found with relations to codes over Z2k (cf. [5]). The connection between codes over Z4 and

unimodular lattices prompted the definition of the Euclidean weight of codewords of length n over Z4 (cf.

14], [15]), and more generally, over Z2k (cf. [5], [58], [59]).

Let z ∈ Z2a , the Euclidean weight of z, denoted by |z|E , is given as

|z|E =

{
z2, if 0 ≤ z ≤ 2a−1

(2a − z)2, if 2a−1 < z ≤ 2a − 1

The Euclidean weight of a codeword (c0, c1, . . . , cn−1) of length n over Z2a is the rational sum of the Euclidean

weights of its components:

wtE(c0, c1, . . . , cn−1) = |c0|E + |c1|E + · · ·+ |cn−1|E .

The Euclidean distance (or minimum Euclidean weight) dE of a linear code C is the minimum Euclidean

weight of nonzero codewords of C:

dE(C) = min{wtE(x− y) : x, y ∈ C, x 6= y} = min{wtE(c) : c ∈ C, c 6= 0}.
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• dE(C) =



0 if i = 2sa

1 if i = 0

22l+1 if 2sl + 1 ≤ i ≤ 2sl + 2s−1, for 0 ≤ l ≤ a− 2

22l+2 if 2sl + 2s−1 + 1 ≤ i ≤ 2s(l + 1), for 0 ≤ l ≤ a− 2

22a−1 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1

22a+k−1 if 2s(a− 1) + 1 +
k∑

j=1

2s−j ≤ i ≤ 2s(a− 1) +
k+1∑
j=1

2s−j , for 1 ≤ k ≤ s− 1.

In the special case when the alphabet is Z4, or its Galois extension GR(4,m), repeated-
root cyclic and negacyclic codes have been studied in more details. Among other partial
results, the structures of negacyclic and cyclic codes over Z4 of any length were respectively
provided by Blackford in 2003 [12], and Dougherty and Ling in 2006 [60].

The Discrete Fourier Transform is an useful tool to study structures of codes, for in-
stance, it was used by Blackford [12], [13], and Dougherty and Ling [60] to recover an tuple c
from its Mattson-Solomon polynomial. In 2003, Blackford used the Discrete Fourier Trans-
form to give a decomposition of the ambient ring Z4[x]

〈x2an+1〉 of cyclic codes of length 2an over

Z4 as a direct sum of GR(4,mi)[u]
〈u2a+1〉 . The rings GR(4,mi)[u]

〈u2a+1〉 are the ambient ring of negacyclic
codes of length 2a over GR(4,mi), which were shown to be chain rings by Blackford, and
later by Dinh [40], for the more general case over GR(2z,mi).
Theorem 6.8. (cf. [12, Lemma 2, Theorem 1]) Let n be an odd positive integer, and a be
any non-negative integer. Let I denote a complete set of representatives of the 2-cyclotomic
cosets modulo n, and for each i ∈ I, let mi be the size of the 2-cyclotomic coset containing
i. Then

(a) For any m ≥ 1, the ring GR(4,m)[u]
〈u2a+1〉 is a chain ring with maximal ideal 〈u + 1〉, and

residue field F2m. Its ideals, i.e., negacyclic codes of length 2a over GR(4,m) are 〈0〉,
〈1〉, 〈(u+ 1)i〉, and 〈2(u+ 1)i〉, where 1 ≤ i ≤ 2a − 1.

(b) The map

φ :
Z4[x]

〈x2an + 1〉
−→

⊕
i∈I

GR(4,mi)[u]

〈u2a + 1〉
,

given by

γ(c(x)) = [ĉi]i∈I ,

where (ĉ0, ĉ1, . . . , ĉn−1) is the Discrete Fourier Transform of c(x), is a ring isomor-
phism.
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(c) Each negacyclic code of length 2an over Z4, i.e., an ideal of the ring Z4[x]
〈x2an+1〉 , is

isomorphic to ⊕i∈ICi, where Ci is an ideal of GR(4,mi)[u]
〈u2a+1〉 (such ideals are provided in

part (a)).

Using this, Blackford went on to show that Z4[x]
〈x2an+1〉 is a pricipal ideal ring, as its ideals

are principally generated, and established a concatenated structure of negacyclic codes over
Z4:

Theorem 6.9. (cf. [12, Theorems 2, 3]B03a) Let C be a negacyclic code of length 2an over
Z4, i.e., an ideal of the ring Z4[x]

〈x2an+1〉 . Then

(a) C = 〈g(x)〉, where g(x) =
∏2a+1

i=0 [gi(x)]i, and {gi(x)} are monic coprime divisors of
xn − 1 in Z4[x].

(b) Any codeword of C is equivalent to an (2an)-tuple of the form (b0 |b1 | · · · |b2a−1),
where

bi =

2a−1∑
j=0

(
j

i

)
aj ,

(
j

i

)
=

(
j

i

)
(mod 2),

and

aj ∈ 〈gj+1 . . . g2a+1 + 2gj+2a+1 . . . g2a+1〉 ⊆
Z4[x]

〈xn − 1〉
.

We now turn our attention to repeated-root cyclic codes over Z4. In 2003, Abualrub and
Oehmke [1] classified cyclic codes of length 2k over Z4 by their generators, and after that
they derived in 2004 a mass formula for the number of such codes [2]. In 2006, Dougherty
and Ling [60] generalized that to give a classification of cyclic codes of length 2k over Galois
ring GR(4,m):

Theorem 6.10. (cf. [60, Lemma 2.3, Theorem 2.6]) Let η be a primitive (2m − 1)th root
of unity, and the Teichmüller set of representatives Tm = {0, 1, η, η2, . . . , η2m−2}. Then the
ambient ring GR(4,m)[u]

〈u2k−1〉
is a local ring with maximal ideal 〈2, u− 1〉, and residue field F2m.

Cyclic codes of length 2k over GR(4,m), i.e., ideals of GR(4,m)[u]

〈u2k−1〉
, are

• 〈0〉, 〈1〉,

• 〈2(x− 1)i〉,

where 0 ≤ i ≤ 2k − 1,

•
〈

(x− 1)i + 2
∑i−1

j=0 sj(x− 1)j
〉
,

where 1 ≤ i ≤ 2k − 1, and sj ∈ Tm for all j,
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•
〈

2(u− 1)l, (x− 1)i + 2
∑i−1

j=0 sj(x− 1)j
〉
,

where 1 ≤ i ≤ 2k − 1, l < i, and sj ∈ Tm for all j.

Furthermore, the number of such cyclic codes is

N (m) = 5 + 22
k−1m + 2m (5 · 2m − 1)

2m(2k−1−1) − 1

(2m − 1)2
− 4 · 2k−1 − 1

2m − 1
.

In 2003, using the Discrete Fourier Transform, Blackford [13] gave the structure of cyclic
codes of length 2n (n is odd) over Z4. Later, in 2006, Dougherty and Ling [60] generalized
that to obtain a description of cyclic codes of any length over Z4 as a direct sum of cyclic
codes of length 2k over GR(4,mα).

Theorem 6.11. (cf. [13, Theorem 2], [60, Theorem 3.2, Corollaries 3.3, 3.4] Let n be an
odd positive integer, and k be any non-negative integer. Let J denote a complete set of
representatives of the 2-cyclotomic cosets modulo n, and for each α ∈ J , let mα be the size
of the 2-cyclotomic coset containing α. Then

(a) The map

γ :
Z4[x]

〈x2kn − 1〉
−→

⊕
α∈J

GR(4,mα)[u]

〈u2k − 1〉
,

given by

γ(c(x)) = [ĉα]α∈J ,

where (ĉ0, ĉ1, . . . , ĉn−1) is the Discrete Fourier Transform of c(x), is a ring isomor-
phism.

(b) Each cyclic code of length 2kn over Z4, i.e., an ideal of the ring Z4[x]

〈x2kn−1〉
, is isomorphic

to ⊕α∈JCα, where Cα is an ideal of GR(4,mα)[u]

〈u2k−1〉
(such ideals are classified in Theorem).

(c) The number of distinct cyclic code of length 2kn over Z4 is
∏
α∈J N (mα), where N (mα)

is the number of cyclic codes of length 2k over GR(4,mα), which is given in Theorem.

This decomposition of cyclic codes were then used to completely determine the gener-
ators of all cyclic codes, and their sizes:

Theorem 6.12. (cf. [60, Theorems 4.2, 4.3]) Let n be an odd positive integer, and k be any
non-negative integer, and let C be a cyclic code of length 2kn over Z4, i.e., C is an ideal of
the ring Z4[x]

〈x2kn−1〉
. Then
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(a) C is of the form

〈
p(x2

k
)
2k−1∏
i=0

qi(x
2k)

2k−1∏
i=i

(∏
T

r̃i,T (x)
i
)

2k−1∏
i=i

(
i−1∏
l=0

s̃i,l(x)
i
)

2p(x2
k
)
2k−1∏
i=0

qi(x)i
2k−1∏
i=i

(∏
T

ri,T (x)T

)
2k−1∏
i=i

(
i−1∏
l=0

si,l(x)l

)〉
,

where

xn − 1 = p(x)

2k−1∏
i=0

qi(x)

2k−1∏
i=i

(∏
T

ri,T (x)

)2k−1∏
i=i

(
i−1∏
l=0

si,l(x)

) y(x),

and r̃i,T (x) = ri,T (x) (mod 2), s̃i,l(x) = si,l(x) (mod 2), and for each i, the product∏
T is taken over all possible values of T as follows:

• if 1 ≤ i ≤ 2k−1, then T = i,

• if 2k−1 < i < 2k−1 + t (t > 0), then T = 2k−1,

• if i = 2k−1 + t (t > 0), then 2k−1 ≤ T ≤ i,

• if i > 2k−1 + t (t > 0), then T = 2k−1 or 2k − i+ t.

(b) The number of codewords in C is

|C| = 42
k deg(p)

2k−1∏
i=0

2(2
k−i) deg(qi)

2k−1∏
i=1

(∏
T

2(2
k+1−i−T ) deg(ri,T )

)
2k−1∏
i=1

(
i−1∏
l=0

2(2
k+1−i−l) deg(si,l)

)
.

There are four finite commutative rings of four elements, namely, the Galois field F4,
the ring of integers modulo four Z4, the ring F2 + uF2 where u2 = 0, and the ring F2 + vF2

where v2 = v. The first three are chain rings, while the last one, F2 + vF2, is not. Indeed,
F2 + vF2

∼= F2 × F2, which is not even a local ring. The ring F2 + uF2 consists of all binary
polynomials of degree 0 and 1 in indeterminate u, it is closed under binary polynomial
addition and multiplication modulo u2. Thus, F2 + uF2 = F2[u]

〈u2〉 = {0, 1, u, u = u + 1} is a
chain ring with maximal ideal {0, u}.

The addition of F2 + uF2 is similar to that of the Galois field F4 = {0, 1, ξ, ξ2 = ξ+ 1},
where u is replaced by ξ. The multiplication of F2+uF2 is similar to the multiplication of the
ring Z4, where u is replaced by 2. In fact, (F2+uF2,+) ∼= (F4,+), and (F2+uF2, ∗) ∼= (F4, ∗).
Thus, F2 + uF2 lies between F4 and Z4, in the sense that it is additively analogous to F4,
and multiplicatively analogous to Z4. In 2009, Dinh [45] established the structure of all
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constacyclic codes of length 2s over F2m +uF2m , for any positive integer m. Of course, over
F2m + uF2m , cyclic and negacyclic codes coincide, their structure, and sizes are as follows:

Theorem 6.13. (cf. [45])

(a) The ring (F2m+uF2m )[x]
〈x2s+1〉 is a local ring with maximal ideal 〈u, x+1〉, but it is not a chain

ring.

(b) Cyclic codes of length 2s over F2m+uF2m are precisely the ideals of the ring (F2m+uF2m )[x]
〈x2s+1〉 ,

which are

• Type 1: (trivial ideals)

〈0〉, 〈1〉

• Type 2: (principal ideals with nonmonic polynomial generators)

〈u(x+ 1)i〉,

where 0 ≤ i ≤ 2s − 1,

• Type 3: (principal ideals with monic polynomial generators)

〈
(x+ 1)i + u(x+ 1)th(x)

〉
,

where 1 ≤ i ≤ 2s − 1, 0 ≤ t < i, and either h(x) is 0 or h(x) is a unit where it
can be represented as h(x) =

∑
j hj(x+ 1)j , with hj ∈ F2m , and h0 6= 0.

• Type 4: (nonprincipal ideals)〈
(x+ 1)i + u

κ−1∑
j=0

cj(x+ 1)j , u(x+ 1)κ

〉
,

where 1 ≤ i ≤ 2s− 1, cj ∈ F2m , and κ < T , where T is the smallest integer such

that u(x+ 1)T ∈
〈

(x+ 1)i + u
∑i−1

j=0 cj(x+ 1)j
〉
; or equivalently,

〈
(x+ 1)i + u(x+ 1)th(x), u(x+ 1)κ

〉
,

with h(x) as in Type 3, and deg(h) ≤ κ− t− 1.

(c) The number of distinct cyclic codes of length 2s over F2m + uF2m is

2m(2s−1−1)(22m + 2m + 2)− 22m+1 − 2

(2m − 1)2

+
6 · 2m(2s−1) − 2s+1 − 1

2m − 1
+ 2m2s−1

+ 4 · 2m(2s−1−1) + 3 · 2s−1 − 1.
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(d) Let C be a cyclic code of length 2s over F2m + uF2m, as classified in (b). Then the
number of codewords nC of C is given as follows.

• If C = 〈0〉, then nC = 1.

• If C = 〈1〉, then nC = 2m2s+1
.

• If C =
〈
u(x+ 1)i

〉
, where 0 ≤ i ≤ 2s − 1, then nC = 2m(2s−i).

• If C =
〈
(x+ 1)i

〉
, where 1 ≤ i ≤ 2s − 1, then nC = 22m(2s−i).

• If C =
〈
(x + 1)i + u(x + 1)th(x)

〉
, where 1 ≤ i ≤ 2s − 1, 0 ≤ t < i, and h(x) is a

unit, then

nC =

{
22m(2s−i), if 1 ≤ i ≤ 2s−1 + t

2

2m(2s−t), if 2s−1 + t
2 < i ≤ 2s − 1

.

• If C =
〈
(x+ 1)i + u(x+ 1)th(x), u(x+ 1)κ

〉
,

where 1 ≤ i ≤ 2s − 1, 0 ≤ t < i, either h(x) is 0 or h(x) is a unit, and

κ < T =

{
i, if h(x) = 0

min{i, 2s − i+ t}, if h(x) 6= 0 ,

then nC = 2m(2s+1−i−κ).

Remark 6.14.

• For any odd prime p, the structure of all constacyclic codes of length ps over Fpm +uFpm ,
for any positive integer m, is provided in [47]. Duals and all self-dual codes among
such codes are given in [49].

• Algebraic structure of all constacyclic codes of length 2ps over Fpm+uFpm are completely
determinded by Dinh et al. in [29], [57].

• Structure of all constacyclic codes of length 4ps over Fpm + uFpm are given by Dinh et
al. in [48], [50], [51], [52], [56].

7 Some Generalizations

In this section we briefly mention but a few alternative directions in which the theories
studied here have been extended.

As mentioned in Section 4, for a unit λ the ring R, the λ-constacyclic (or λ-twisted)
shift τλ on Rn is the shift
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τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, · · · , xn−2).

A code C is said to be a quasi-cyclic code of index l if C is closed under the cyclic shift of
l symbols τ l, i.e., if τ l(C) = C, and C is called a λ-quasi-twisted code of index l if it is closed
under the λ-twisted shift of l symbols, i.e., τ lλ(C) = C. Of course, when λ = 1, a λ-quasi-
twisted code of index l is just a quasi-cyclic code of index l, and it becomes a λ-constacyclic
code if l = 1. It is easy to see that a code of length n is λ-quasi-twisted (quasi-cyclic)
of index l if and only if it is λ-quasi-twisted (quasi-cyclic) of index gcd(l, n). Therefore,
without loss of generality, one only need to consider λ-quasi-twisted (quasi-cyclic) codes of
index l where l is a divisor of the length n.

Quasi-cyclic codes over finite fields have a rich history in and of themselves. They have
obtained many useful results, such as providing connections between quasi-cyclic block
codes and convolutional codes [61], [117].

Quasi-cyclic codes over finite rings have received much attention since the 1990s, many
new linear codes which are quasi-cyclic (over finite fields or finite rings) have been provided
(see, for example, [3], [30], [37], [38], [68], [69], [87], [88], [115]).

Another variation that yields interesting results both for codes over fields and codes over
rings is when one starts with a non-commutative ambient for codes rather than the usual
commutative setting of quotient rings of the polynomial ring F [x]. Specifically, consider
the codes that are ideals of quotient rings of the (infinite) ring of skew polynomial rings
R[x;σ] (where σ is an automorphism of the ring R). These are the skew cyclic codes. They
have the property that if (a0, a1, . . . , an−1) is a code word in a skew cyclic code C, then
(σ(an−1), σ(a0), . . . , σ(an−2)) is also a codeword in C. Of course when σ is the identity this
produces the normal cyclic shift. This approach, introduced in [16] for skew cyclic codes over
finite fields, was later extended to the code over rings settings in [17] for skew constacyclic
codes over Galois rings.

If quotients of a multivariable polynomial ring R[x1, . . . , xn] are used as ambients for
codes, one gets the so-called multivariable codes. The study of multivariable codes goes
back to the work of Poli in [93], [94] where multivariable codes over finite fields were first
introduced and studied. There, ideals of R[x,y,z]

〈t1(x),t2(y),t3(z)〉 , where R is a finite field, were
considered. This notion then was extended by Martínez-Moro and Rúa in [93], [94] where
R is assumed to be a finite chain ring.

Finally, there are the notions of polycyclic codes and sequential codes, which were
introduced in [74] and [89], respectively. A linear code C of length n is right polycyclic
if there exists an n-tupple c = (c0, c1, . . . , cn−1) ∈ Fn such that for every codeword
(a0, a1, . . . , an−1) ∈ C, (0, a0, a1, . . . , an−2) + an−1(c0, c1, . . . , cn−1) ∈ C. Left polycyclic
is defined similarly. C is bi-polycyclic if it is both left and right polycyclic. Polycyclicity
of codes is clearly a generalization of cyclicity, as a λ-constacyclic code is right polycyclic
induced by c = (λ, 0, . . . , 0), and left polycyclic using d = (0, . . . , 0, λ−1). So, indeed a
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λ-constacyclic code is bi-polycyclic.
As with cyclic and constacyclic codes, polycyclic codes may be understood in terms

of ideals in quotient rings of polynomial rings. Given c = (c0, c1, . . . , cn−1) ∈ Fn, and let
f(x) = xn − c(x), where c(x) = c0 + c1x + · · · + cn−1x

n−1 then the F -linear isomorphism
ρ : Fn → F [x]

〈f(x)〉 = Rn sending the codeword a = (a0, a1, . . . , an−1) to the polynomial
a0 + a1x+ · · ·+ an−1x

n−1, identify the right polycyclic codes induced by c with the ideals
of Rn.

Similarly, when C is a left polycyclic code, a slightly different isomorphism gives the
identification of the left polycyclic codes induced by c as ideals of the corresponding ambient
ring. As before, let c = (c0, c1, . . . , cn−1) ∈ Fn but this time let c′(x) = c0x

n−1 + c1x
n−2 +

· · · + cn−1. Then let f ′(x) = xn − c′(x) and consider γ : Fn → F [x]
〈f ′(x)〉 = Ln defined via

γ : (a0, a1, . . . , an−1) 7→ a0x
n−1 + · · ·+ an−2x+ an−1. In this setting, very much like before,

one can see that γ(C) is an ideal of the quotient ring Ln = F [x]
〈f ′(x)〉 .

Since all ideals of F [x] are principal, the same is true in F [x]
〈f(x)〉 , thus the ambient F [x]

〈f(x)〉
is a PIR. Furthermore, following the usual arguments used in the theory of cyclic codes,
one easily sees that every polycyclic code C of dimension k has a monic polynomial g(x) of
minimum degree n− k belonging to the code. This polynomial is a factor of f(x) which is
called a generator polynomial of C. Also, a generator of a code is unique up to associates
in the sense that if g1(x) ∈ F [x] has degree n − k, it is easy to show that g1(x) is in the
code generated by g(x) if and only ifg1(x) = ag(x) for some 0 6= a ∈ F .

As with cyclic codes, using the generator polynomial of a polycyclic code C, one can
readily construct a generator matrix for it. It turns out that this property in fact charac-
terizes polycyclic codes, as pointed out in [89, Theorem 2.3].

Theorem 7.1. A code C ⊆ Fn is right polycyclic if and only if it has a k×n generating
matrix of the form

G =


g0 g1 . . . gn−k 0 . . . 0

0 g0 . . . gn−k−1 gn−k . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . g0 g1 . . . gn−k

 ,

with gn−k 6= 0. In this case ρ(C) = 〈g0+g1x+· · ·+gn−kxn−k〉 is an ideal of Rn = F [x]
〈f(x)〉 .

The same criterion, but requiring that g0 6= 0 instead of gn−k 6= 0, serves to characterize
left polycyclic codes. In the latter case, γ(C) = 〈gn−k + gn−k−1x+ · · ·+ g0x

n−k〉 is an ideal
of Ln = F [x]

〈f(x)〉 .

A code C is right sequential if there is a function φ : Fn → F such that for every
(a0, a1, . . . , an−1) ∈ C, (a1, . . . , an−1, b) ∈ C where b = φ(a0, a1, . . . , an−1). Left sequential
is defined similarly. C is bi-sequential if it is both right and left sequential. [74, Examples
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6.3, 6.4] gave examples to illustrate the promise of sequential codes as a source for good
(even optimal) codes.

It has been shown in [89] that a code C over a field F is right sequential if and only
if its dual C⊥ is right polycyclic. Also, C is sequential and polycyclic if and only if C and
C⊥ are both sequential if and only if C and C⊥ are both polycyclic. Furthermore, any one
of these equivalent statements characterizes the family of constacyclic codes. In fact, the
following results of [89. Theorems 3.2, 3.5] are true:

Theorem 7.2. Let C be a code of length n over the finite field F . Then

(a) The following conditions are equivalent:

(i) C is right (respectively, left, bi-) sequential,

(ii) C⊥ is right (respectively, left, bi-) polycyclic.

(b) The following conditions are equivalent:

(1-R) C and C⊥ are right sequential,

(2-R) C and C⊥ are right polycyclic,

(3-R) C is right sequential and right polycyclic,

(4-R) C is right sequential and bi-polycyclic,

(5-R) C is right sequential and left polycyclic with generator polynomial not a mono-
mial of the form xt (t ≥ 1),

(1-L) C and C⊥ are left sequential,

(2-L) C and C⊥ are left polycyclic,

(3-L) C is left sequential and left polycyclic,

(4-L) C is left sequential and bi-polycyclic,

(5-L) C is left sequential and right polycyclic with generator polynomial not a mono-
mial of the form xt (t ≥ 1),

(A) C is right polycyclic and bisequential,

(B) C is left polycyclic and bisequential,

(C) C is constacyclic.

In particular, this theorem highlights in theoretical terms the significance of constacyclic
codes as a central notion in coding theory.
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TÓM TẮT

CẤU TRÚC ĐẠI SỐ CỦA MÃ CYCLIC VÀ NEGACYCLIC

TRÊN VÀNH CHUỖI HỮU HẠN VÀ ỨNG DỤNG

Tổng quan về lý thuyết mã được trình bày trong bài báo, đặc biệt tập trung vào mã
cyclic và negacyclic trên vành chuỗi hữu hạn. Vai trò quan trọng của vành hữu hạn với tư
cách là bảng chữ cái trong lý thuyết mã. Chúng tôi đưa ra các kết quả về mã nghiệm đơn
lẫn mã nghiệm lặp. Rất nhiều hướng nghiên cứu được tổng quát hóa đối với mã cyclic và
negacyclic. Bài báo cũng giới thiệu về ứng dụng của nó trong lĩnh vực đại số.
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